Plasmodium dipeptidyl aminopeptidases as malaria transmission-blocking drug targets.
نویسندگان
چکیده
The Plasmodium falciparum and P. berghei genomes each contain three dipeptidyl aminopeptidase (dpap) homologs. dpap1 and -3 are critical for asexual growth, but the role of dpap2, the gametocyte-specific homolog, has not been tested. If DPAPs are essential for transmission as well as asexual growth, then a DPAP inhibitor could be used for treatment and to block transmission. To directly analyze the role of DPAP2, a dpap2-minus P. berghei (Pbdpap2Δ) line was generated. The Pbdpap2Δ parasites grew normally, differentiated into gametocytes, and generated sporozoites that were infectious to mice when fed to a mosquito. However, Pbdpap1 transcription was >2-fold upregulated in the Pbdpap2Δ clonal lines, possibly compensating for the loss of Pbdpap2. The role of DPAP1 and -3 in the dpap2Δ parasites was then evaluated using a DPAP inhibitor, ML4118S. When ML4118S was added to the Pbdpap2Δ parasites just before a mosquito membrane feed, mosquito infectivity was not affected. To assess longer exposures to ML4118S and further evaluate the role of DPAPs during gametocyte development in a parasite that causes human malaria, the dpap2 deletion was repeated in P. falciparum. Viable P. falciparum dpap2 (Pfdpap2)-minus parasites were obtained that produced morphologically normal gametocytes. Both wild-type and Pfdpap2-negative parasites were sensitive to ML4118S, indicating that, unlike many antimalarials, ML4118S has activity against parasites at both the asexual and sexual stages and that DPAP1 and -3 may be targets for a dual-stage drug that can treat patients and block malaria transmission.
منابع مشابه
Functional studies of Plasmodium falciparum dipeptidyl aminopeptidase I using small molecule inhibitors and active site probes.
The widespread resistance of malaria parasites to all affordable drugs has made the identification of new targets urgent. Dipeptidyl aminopeptidases (DPAPs) represent potentially valuable new targets that are involved in hemoglobin degradation (DPAP1) and parasite egress (DPAP3). Here we use activity-based probes to demonstrate that specific inhibition of DPAP1 by a small molecule results in th...
متن کاملBlocking Plasmodium falciparum Malaria Transmission with Drugs: The Gametocytocidal and Sporontocidal Properties of Current and Prospective Antimalarials
Drugs that kill or inhibit the sexual stages of Plasmodium could potentially amplify or synergize the impact of other interventions by blocking transmission to mosquitoes. Primaquine and other 8-aminoquinolines have long offered such potential, but safety and other concerns have limited their use. Although transmission-blocking properties are not often a priority of drug discovery efforts, a nu...
متن کاملIdentification of novel Plasmodium gallinaceum zygote- and ookinete-expressed proteins as targets for blocking malaria transmission.
The development of transmission-blocking vaccines is one approach to malaria control. To identify novel Plasmodium zygote- and ookinete-secreted proteins as targets of blocking malaria transmission, monoclonal antibodies (MAbs) were produced against parasite-secreted proteins found in Plasmodium gallinaceum ookinete culture supernatants. Four MAbs-1A6, 2A5, 2B5, and 4B6-were identified that bou...
متن کاملAn Ancient Protein Phosphatase, SHLP1, Is Critical to Microneme Development in Plasmodium Ookinetes and Parasite Transmission
Signaling pathways controlled by reversible protein phosphorylation (catalyzed by kinases and phosphatases) in the malaria parasite Plasmodium are of great interest, for both increased understanding of parasite biology and identification of novel drug targets. Here, we report a functional analysis in Plasmodium of an ancient bacterial Shewanella-like protein phosphatase (SHLP1) found only in ba...
متن کاملAnopheles gambiae salivary gland proteins as putative targets for blocking transmission of malaria parasites.
Anopheles gambiae is the primary vector of human malaria in sub-Saharan Africa. Invasion of Anopheles salivary glands by Plasmodium sporozoites is a necessary step in the transmission of malaria and is likely to be mediated by specific receptor-ligand interactions. We are interested in identifying putative an A. gambiae salivary gland receptor or receptors for sporozoite invasion as a possible ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 57 10 شماره
صفحات -
تاریخ انتشار 2013